SCORE: ____/35 POINTS

- You may use the result of exercise 26 in section 4.4 without proving it.
- You may NOT use the results of example 4.2.3 in section 4.2 unless you write formal proofs of them.
- You may use the property that all integers are either even or odd, AND the property that consecutive integers have opposite parity.

Prove by mathematical induction that $5^n + 10 < 6^n$ for all integers $n \ge 2$.

SCORE: ____/ 15 PTS

There are two possible solutions for the inductive step, depending on which side of the inequality you started from.

BASIS STEP:

$$(2)$$
 $5^2 + 10 = 26 < 36 = 6^2$

INDUCTIVE STEP:

Suppose
$$5^k + 10 < 6^k$$
 for some particular but arbitrary integer $k \ge 2$

[Need to prove: $5^{k+1} + 10 < 6^{k+1}$]

SOLUTION 2:

So, by mathematical induction, $5^n + 10 < 6^n$ for all integers $n \ge 2$.

MANY OTHER SOLUTIONS POSSIBLE -

[a] Write **ONLY** the first complete sentence of a proof by contradiction. (The answer is much more than just 2 words.)

Suppose not, that is, suppose there is a positive irrational number whose square root is rational.

[b] Write **ONLY** the first and last complete sentences of a proof by contraposition. (QED is not a sentence.)

FIRST: Let x be a particular but arbitrary positive number such that \sqrt{x} is rational.

LAST: Therefore, x is rational.

One of the following statements is true and one is false.

Write a formal proof for the true statement, and show that the false statement is false.

SCORE: ____/ 15 PTS

- For all integers n, if $3 \mid (n^2 7)$, then $n \mod 3 = 1$ or $n \mod 3 = 2$. [a]
- The product of a rational number and an irrational number is irrational. [b]

[a] is true. There are two possible solutions, depending on whether you used contraposition or contradiction.

SOLUTION 1:

PROOF BY CONTRAPOSITION:

For all integers n, if $n \mod 3 \neq 1$ and $n \mod 3 \neq 2$, then $3 \nmid (n^2 - 7)$. CONTRAPOSITIVE:

Let n be a particular but arbitrary integer such that $n \mod 3 \neq 1$ and $n \mod 3 \neq 2$.

So, $n \mod 3 = 0$ by QRT.

So, n = 3q for some $q \in Z$ by definition of mod.

So,
$$n^2 - 7 = 9q^2 - 7 = 3(3q^2 - 3) + 2$$
 where $3q^2 - 3 \in Z$ by closure of Z under \times and Z .

So,
$$(n^2 - 7) \mod 3 = 2$$
 by definition of mod.

So,
$$3 \nmid (n^2 - 7)$$
 by exercise 26 in section 4.4.

So, by contraposition, for all integers n, if $3 \mid (n^2 - 7)$, then $n \mod 3 = 1$ or $n \mod 3 = 2$.

SOLUTION 2:

ONLY GRADE AGAINST I SOLUTION

PROOF BY CONTRADICTION:

Suppose not, that is, suppose there is an integer n such that $3 \mid (n^2 - 7)$ and $n \mod 3 \neq 1$ and $n \mod 3 \neq 2$.

So, $n \mod 3 = 0$ by QRT.

So, n = 3q for some $q \in Z$ by definition of mod.

So,
$$n^2 - 7 = 9q^2 - 7 = 3(3q^2 - 3) + 2$$
 where $3q^2 - 3 \in Z$ by closure of Z under × and –.

So, $(n^2 - 7) \mod 3 = 2$ by definition of mod.

So, $3 \nmid (n^2 - 7)$ by exercise 26 in section 4.4.

But $3 \mid (n^2 - 7)$ (CONTRADICTION)

So, by contradiction, for all integers n, if $3 \mid (n^2 - 7)$, then $n \mod 3 = 1$ or $n \mod 3 = 2$

[b] is false. 0 is rational and $\sqrt{2}$ is irrational, but $0 \times \sqrt{2} = 0$ is rational.